Environmental Remediation Applications


Besides lighter cars and machinery that requires less fuel, and alternative fuel and energy sources, there are many eco-friendly applications for nanotechnology, such as materials that provide clean water from polluted water sources in both large-scale and portable applications, and ones that detect and clean up environmental contaminants.
·         Nanotechnology could help meet the need for affordable, clean drinking water through rapid, low-cost detection of impurities in and filtration and purification of water. For example, researchers have discovered unexpected magnetic interactions between ultrasmall specks of rust, which can help remove arsenic or carbon tetrachloride from water (see image); they are developing nanostructured filters that can remove virus cells from water; and they are investigating a deionization method using nano-sized fiber electrodes to reduce the cost and energy requirements of removing salts from water.
  • Nanoparticles will someday be used to clean industrial water pollutants in ground water through chemical reactions that render them harmless, at much lower cost than methods that require pumping the water out of the ground for treatment.
  • Researchers have developed a nanofabric "paper towel," woven from tiny wires of potassium manganese oxide, that can absorb 20 times its weight in oil for cleanup applications.
  • Many airplane cabin and other types of air filters are nanotechnology-based filters that allow “mechanical filtration,” in which the fiber material creates nanoscale pores that trap particles larger than the size of the pores. They also may contain charcoal layers that remove odors. Almost 80% of the cars sold in the U.S. include built-in nanotechnology-based filters.
  • New nanotechnology-enabled sensors and solutions may one day be able to detect, identify, and filter out, and/or neutralize harmful chemical or biological agents in the air and soil with much higher sensitivity than is possible today. Researchers around the world are investigating carbon nanotube “scrubbers,” and membranes to separate carbon dioxide from power plant exhaust. And researchers are investigating particles such as self-assembled monolayers on mesoporous supports (SAMMS™), dendrimers, carbon nanotubes, and metalloporphyrinogens to determine how to apply their unique chemical and physical properties for various kinds of toxic site remediation.